IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Non-generic connections corresponding to front solutions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25 3773
(http://iopscience.iop.org/0305-4470/25/13/025)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.58
The article was downloaded on 01/06/2010 at 16:44

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gen. 25 (1992) 3773-3796. Prinled in the UK

Non-generic connections corresponding to front solutions
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Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA

Received 6 November 1991, in final form 13 February 1992

Abstracl. A classification of special ‘nonlinear’ front solutions for certain one-time and
one-space reaction—diffusion equalions is presented, using the method of Weiss, Tabor
and Carnevale (wTC). These results are related to known stability criteria, in particular
the stecpness criterion of van Saarloos, The wTC method is shown lo be equivalent
to a special first-order reduction, and both of these methods are shown to work for
reaction—diffusion equations with special nonlinearities. Of particular interest is the fact
that the special first-order reduclion is shown W give separatrices in appropriate phase
spaces. An exampie of a reaction—dilfusion equation is presented without these speciai
nonlinearities. While this equation is shown 10 have a special ‘nonlinear’ connection and
resulting slability properties, il is intractable for either a singular manifold expansion
or a first-order reduction. A Lie symmetry analysis is carried out, and it is shown that
equations with continuous groups other than tranlational invariance are only a subclass of
equalions which are amenable 1o the special solution techniques. However, the ‘rescaling
ansatz’ of Carello and Thbor suggests that some symmetries are present.

1. Introduction

For years attention has been focused on front solutions to reaction-diffusion equations
of the form

u, = u,, + Pu) (1)

with

Puy=) p;ul.

j=1
In particular, such equations arise in the theory of first- and second-order phase
transitions. A {ront solution connects any rwo steady, spatially invariant states with
an interface moving at constant speed ¢. Therefore a front may be written in the
form

u=u{xr—oct).
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With the change of variables = = = — ct, a front satisfies the ODE

u,, +eu, + Pluy=10 2)

with boundary conditions

U — U as z— oo, Plu,)=0
U — u, as z — Foo, Pu,)=0.
Normally, w«, is taken to be a stablc state of (1) at z = —oo, while u, is taken to

be the (unstable) ground state, w, = 0. In this context, a front represents a change
between two states, one characterized by u = u, and the other by the ground state.

Interest in equations in the form of (1) began with the works of Fisher and
Kolmogorov [1, 2], who independently examined the equation

Uy =u+um—u3 3)
which models the spatial spread of some sclective genotype through a population.
In (3), » = 0 corresponds to a population without the selective adaptation, which
is unstable through the process of natural selection. Given even a hint of a new,
selective mutation, the corresponding genotype increases in probability and spreads
through the population over time. This ‘spread’ is equivalent to a front solution of
(3).

Kolmogorov [2] showed that small, compactly supported initial conditions always
evolve into fronts with a certain preferred velocity, ¢ = ¢* = 2. This means that a
selective mutation spreads through a population at a characteristic speed, independent
of its initial distribution. Kolmogorov’s argument is based on the method of steepest
descents, applied to an integral representation of solutions to the linear portion of
(3). Dee and Langer [3] and Ben-Jacob ef of [4] presented an equivalent argument
based on considering the unstable modes of « = 0 in (3). If

u ~explot+ik{x — ct)]
then the linear portion of (3) gives the dispersion relation
o=ick+1-k%

Dee and Langer conjecture that the mode &* with maximum growth rate will dominate
the development of the far ficld, and hence determine the asymptotic behaviour of
fronts. Maximality gives the condition

do

0= ﬂk;k*

=ic" - 2k".

Secondly, they argue that in the frame of relcrence travelling with the stable, asymp-
totic front, the growth rate should be zero, or

o k) =ic"k"+1—-(k")?=0.
These two conditions give

(k)= -1



Non-generic connections corresponding to front solutions 3775

and

cf =12

for a front connecting u, = 1 at 2 = —oo t0 u, = 0 at 2 = oo,
One striking feature of the Dee and Langer-Kolmogorov analysis is that it only
depends on the inear portion of (1). In general, all equations with linear part

ut ‘:uu-i-u:r;r

select the same asymptotic speed ¢* = 2,/i (writing p; = p in (1)). The form of
the nonlinearity plays no role. In direct contrast, van Saarloos [5, 6, 7} presented
examples in which an asymptotic speed ¢ # ¢* is chosen by the PDE. In particular,
for two equations

u, = um-{—,uu+u:£--~u3 (4)
and

u, = Uy, +opu A ut -’ (5)
the special first-order reduction ansatz

= y(w

gives a special, ‘nonlinear’ solution. This nonlincar solution is steeper, faster, and
more stable than the ‘linear’ Kolmogorov front in some parameter regimes. These
results led van Saarloos to present a sclection criterion based on steepness. His
criterion is that the dynamicaily preferrcd front is the front with steepest asymptotic
spatial approach to zero. In somc paramcter regimes, he shows, the lincar front is
steepest, while in others the nonlincar [ront is steepest.

Powell e al [8] expanded on van Saarloos’ work., Firstly they suggested that
van Saarloos’ steepness criterion is equivalent to a maximum temporal growth rate
criterion in the il of fronts. Sccondly, they showed that the nonlinear front is a
continupus deformation of the unique front which exists when ¢ < 0 (for more on
these unique subcritical fronts, scc Jones er of [12]). When the nenlincar front is
preferred, it is a non-generic, ‘strongly heteroclinic’ (SH) connection. By non-generic
connection we mean a heteroclinic connection which begins and ends precisely along
an eigendirection of its fixed points. In the $H case the connection is to the strongest
attracting eigendirection about w = 0 in (2). Thirdly, these authors showed that an
extension of the methods of Weiss, Tubor, and Carnevale (WTC) give the same unique
front. This method is based on a ‘constrained’ cxpansion about a ‘singular manifold’
in complex space-time, and yiclds a varicty of solutions, including [ronts, when the
expansion is restrictcd to real space-time (scc Carricllo and Tabor [9, 10] or Powelj e
af 18] for more details). Cariclio and Tabor [9, 10] also showed that this modified wrc
method is equivalent to other special solation techniques, such as Hirota’s method,
for these systems. '

In light of the above work the intentions of this paper are fourfold. First, for all
equations of the form (1) we will identily the situations in which the WTC approach
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works and what kinds of phase-space connections it produces. In particular, we note
when the method yiclds strongly heteroclinic connections which result in asymprotic
fronts according to the steepness criterion. Secondly, we will show that van Saarloos’
first-order reduction {7] and the WTC method are equivalent methods for fronts.
This makes the classification of possible connections exhaustive within the class of
presently obtainable exact solutions. But more importantly, we will show that the
special first-order reduction must always yield separatrix solutions, which are non-
generic. It therefore may be possible to capture the skeleton of phase space using
either the wrc method or the special first-order reduction.

In section 4, we will introduce an example of a reaction—diffusion PDE for which
the WrC method does not work. We will also show that this WTC counter-example
has strongly hetcroclinic connections in non-trivial parameter regimes, using conti-
nuity arguments in the ODE phase space. Numerically we will demonstrate that the
special connection dominatcs in some parameter regimes. Consequently, we show
that although the w1C method can sclect strongly heteroclinic connections in many
cases, it cannot capture all of the special connections which exist.

in the fina) section we will use Lie symmetry methods [11) to try and determine
if there are any continuous groups that correspond to the class of WIC-amenable
equations. As it turns out, only a subclass of the wic-amenable equations have non-
trivial Lie symmetries, [n addition, discrete symmetries such as the uw — —u Ssymmetry
do not appear to play any significant role. However, use of a rescaling/resummation
extension of the WTC method suggests that certain ‘symmetries’ may be present.

2. The wrc method for fronts

Cariello and Tabor [9, 10] demonstrated that a modificd WTC method can give front
solutions to (1) when P(u) = u — «3. Powell e af [8) showed that the method
also gives front solutions for P(u) = pu + u® — u®. The basic approach for front
connections in (2) is w© examine the behaviour of w near a singularity in complex z.
We assume that at a pole the solution behaves as

w= 2 ©)

[6(=))°

where (3 is a power 1o be determined and ¢ — 0 at the singularity. The use of (6) can
be thought of as the extreme truncation of a Laurant expansion about the singular
manifold ¢(z) = 0. To determine the power 3 we ask that the largest nonlinearity
in (2) balance the leading derivative, which gives

BB+ Da(e,) ¢ 7% ~ pate™?
and hence implies —3 — 2 = —n /3. This gives the power

9

A=

n-1

Knowing the ‘leading balance’ allows us to solve (2) following [9, 10]. Scparate
equations appear at orders ¢+, ¢! and ¢~7~*, whence

p; =0 for FEL(n+1)/20. Q)
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The order of nonlinearity n must either be 2 or odd. Permissable distributions of
nonlinearities occur in (3), (4) and (5); another acceptable form is

Plu) = pu+u' - u'.
Since P(w) can have only three terms, without loss of generality we can always
rescale |p, | = ngn_H}/?] = 1 (provided p,, .y, # 0). We will write p, = 4, and
note p, = -1 since § > 0. The canonical form of the wTC-amenable travelling
frame ODE is thus

Uy, +Cuz+ﬂu+p(n+1)/2u(ﬂ+1)/2_ un =0. (8)

Following [9, 10], we find

1/8
__& (M B2

¢z -
VBB +1)
with
(2,6 + 1);\ = :i:p(n+1J/2 - Cﬁ .

Solving simultaneous equations for ¢ and A gives

_1[ v/BF1 Lo g -
A= [ e ¥ NPy g +

&)

A+1 1 B+1  2u
c=¢p(n+1)/2\/ﬁ+1“‘/“a—-(i)§ an+1);2w+g- (10)

With algebraic manipulation and translational invariance, the WTC method gives a
solution

yo lem? _ [ovBEFT]

= = 11
[1+ex:]? [1 4 eas)? (an
where of = A and u, satisfies P(u,) = 0.
We may write the WTC solution as
VBBTDe,]”

Differentiating (12) with respect to z and using the special form of ¢, we now see
that the wTC solution is precisely in the form of van Saarloos’ first-order reduction,
namely

- G S et 1
" ﬁ”{“ B+ ]
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What we are interested in knowing is this: when does (11) correspond to a strongly

heteroclinic (SH) trajectory, and therefore an asymptotic {front due t© the stecpness
criterion? In gencral, as = — oo for a front solution u

y — I\'+(c)e’\+’ + I _(c)er-*
where
Agle) =14 [—-c:t ¢ — 4u] . | (13)

Consequently the dominant, generic asymptotic behaviour of a front is u ~ e*+* as
z — co. A non-generic (NG) front satisfies cither ', (¢) = 0 or K_{c) = 0. The
SH is an NG connection to the strong cigendirection (K (¢) = 0). When it exists it
is steeper than any generic front and is therefore the asymptotic front state. These
three distinct situations are illustrated in figure 1.

u; u,

M

ta) ¥-3]

2

Figure 1. Possible connections between the fixed
A \u'// poims w = u; and w = 0 in lhe phase space of

- u  equation (2). (¢) Generic connection asymptotic to
the weaker eigendirection corresponding to A4, (b)
Non-generie (NG} connection directly 10 Lhe weaker
cigendirection. (¢) Strongly heteroclinic (SH) con-
nection to the strong cigendirection, corresponding
led 0 A,

We now set about determining if (11) is SH. Let & denote the speed given by (10).
Expanding (11) gives

W= [eaﬁ: — Bectit 4 ]
. > .
The solution « is $H when

aff = A_(&)
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and of = A_{(€) (replacing X with o3 in (9)) when

P(n+1)/2(2ﬁ+ 1) + _1_
B(8+1)

(26+1)+1 , "
=|apG+1y P T EETY

BViasiyy |, 48u i
(B+1) 3+1

) 1/2
Pins1)/2 ﬁp(n+l)/? Zyem ] (14)

T os/aBT Y B+l B

Here the + is the same as (4) in equation (9). This gives the possibilities shown in
table 1.

Table 1. Sunmary of possible resulis.

P(nt1)/2 H + in (9}  Result

0 All - NG connection impossible
<0 H <0 ® No solution
<0 n>0o - NG connection impossible
>0 0 < e - sH connection, W4 (&) =0
>0 o> e - NG conncetion, RK_{&} =0

NG connections are possible only when p, )/ > 0, and select the strong eigen-
direction (are SH) only when

h< o= BB+ 1) =2 E L)
(n—1)?
This latter condition comes from requiring the L£HS of (14) to be positive.

It is easy to test that when of # A_(&), off = A (&). This raises another
question, however. When o = A (&), what about the second term in the series
expansion of (11)? Is a(3+ 1) = A_{), and so docs the wrc method choose some
precise balance between the linear eigendirections?

We find a( 3+ 1) = A_(&) when

1/2
28+ 1) + 1p2 g 7 Piugrife Bbluenyz | 48u
48(A+ 1) T T B3+ 1) WMMMFT (B+1)  B+1

BT 3 B B L SEVT R 1.
"p(n+l}/-’c_) B+ 1 24 B4+ g4+
( )

Squaring both sides and climinating common terms gives

2 — 2
— Plasnyfz = P2\ Plagrye T
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This can only be satisfied when p,, 41y, = 0 or u = 0. As we will show in section 5,
this corresponds to the class of equations which exhibit non-trivial Lie symmetries. In
other classes of equations, when a3 = A (&), it turns out that a(Z+ 1) > A_(&).
The second linear eigendirection is not involved, since K _{Z) = 0 in these cases,
Thus, it is fair to say that WTC gives a non-generic heteroclinic connection (in the
sense that one of K, (&) must be zero) when all three terms of P(u) are non-zero.
When K (&) = 0, these solutions are particularly interesting because the resulting
sH front is the asymptotically selected front.

3. Equivalence of wrC and first-order reduction

In the previous section we have shown that the WTC method for fronts is restricted
to equations with three terms in P{u), of order v, w(**1)/? and w*. We have aiso
shown that the WTC class of solutions is a subclass of solutions given by using a special
first-order reduction (SFOR). The question we turn to now is: are any further solutions
possible using the SFOR? It seems that the answer is no, and that SFOR and the wWTC
method work only in the same circumstances. Moreover, in this section we will also
show that the SFOR will always give separdtnx typc solutions when p, +13/2 ;& 0.

danasnlnian et A CTIATY ooy e = fe

s} LULPICHICIE dll SFUR, we assume that the uum lldJLL.LUIlt:b can be wr lllt:l in
the form

u, = glu) (15}
and (2) becomes
gg' +cg+ P{u)=0 (16)

a new first-order system with independent variable v and dependent variable g.
Attempting a series sotution to (16), let

g
g= ng“
k=t

Substituting into {16) gives a rccursion relation at order u?*+1

2k

r N T 1 sr o ooy U I NI R
e+ e+ Dyl goppr = RT L) 2G5 00041- BT DIk — Pakepa
j=2
and at order u**
) : e 4 | 2’8";‘ .
e+ 2+ Doyl = —5— 2 95905~ Pux
- j=2

Here we have used the convention p,, = 0 when m > n. Notice that if P has
reflectional symmetry ( P(u) = — P(~u)), then all even terms in the expansion for g

must be zero. Since the above recursion relations involve products only of even and
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odd terms in the series for g, the entire summation will be zero for sufficiently large
k. From this it follows that the series must truncate,

In the general case, where P may have no special symmetry, the mth coeflicient
of the power series is growing as m ~ 2 il it is non-zero, due to the summation on the
RHS of the recursion relations. The resulting scries can converge only conditionally
in u. P(u) is, however, analytic in u, and thercfore we expect no less than global
convergence from solutions to (16). Consequently, the series for g must truncate.

Let N be the pumber of terms in the polynomial for g, ie.

N
9= gu*.

k=1

i

In general, unless the coeflicients of P are chosen in some special fashion, the
recursion relations give N 4+ N —1 > » independent algebraic equations. However,
there are only NV 4 1 unknowns, if we count the speed ¢ as an unknown. Hence,
SFOR only works when ‘

N+12N+N-1
or
2> N and ng3.

At this point it is clear that the SFOR cannot work for just any polynomial of
order n. However, it has been shown that the SFOR works for cquations like (5).
Therefore it is possible to choosc ()} so that SFOR works when n > 3. At the very
least g must have two terms, ¢, and gp, with 2/V -1 = n and therefore » odd. This
results in three equations, at orders u, u”¥ and w?™~!, for the three unknowns g,
gn and ¢. Adding any other tcrm g; where 1 < j < N, must add at least two more
equations, resulting in five cquations and only four unknowns. From this analysis, it
becomes clear that the most general casc in which SFOR works is

n+1 -
N = 5 g=ulg +gNuN 1

and

Plu) = pu+ pNuN — N

These are precisely the same circumstances in which the Wrc method gives a solution,
Moreover, SFOR must always give the sume solution as wre. Equation (15) is
separable, giving

» du _du g du
LY

ul(g, + gnuN=1) T g gy (g, +gnuN-1) 0

Integrating both sides gives

i
g1z = In(u) — N n (g, 4+ gy
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and inverting to find u in terms of = gives

|91 led:
[1 -+ gNe(N“”.fh:

= REEN

It is easy to see that this is equivalent to (11) with 3 = 1/(N -1) = 2/(n -1},
a=(N-1)g and y, = (igljjgN)l'

This analysis shows that the classification given in the previous section is exhaustive
among the special solutions we know how to get. The WIC method and SFOR give
precisely the same solutions in all circumstances where they work. We will now show
that the SFOR must always give a separatrix-type solution, and consequently an NG
connection when p.. ., /2 # 0. However, as we will see in the next section, there
aré definitely SH coninections in cquaiu’)i‘:s for which WTC and SFOR ar¢ mappucabnc,
which means that the existence of an SFOR is suflicient, but not necessary, for a
NG connection to exist. The connection between SFORS and separatrices can be
seen by recognizing that SFOR solution(s) are singular in that they depend on only
one, as opposed to two, arbitrary parameters. From the standpoint of the original,
seoond-ordcr ODE, the separatrices correspond to envelope solutions and are thus, by

Aafien sinaular
uyuluuuu, DIILE I .

Let
dH
T = 2P(u)
with
H{0) =

We may rewrite the front ODE (8) in integral form

v"”-i—?cjr vidz = H{wu,)— H(u)
where
du
v= —
dz

v{zy) = 0 and u(z,) = u,. This may also be writtcn as
s d oy
- 2ev” = P [v' + H(u)]
az

which is a statement about the monotonic decrease of total ‘energy’ on the potential
surface depicted in figure 2. Using a chanpge of variables, the above expressions
become

v2+2c-/ vduw = H{uy)— (). (17
U
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H{u)

I

el

K -

Figure 2. The potential energy, f{(u). Fronl trajectodes act like a ball rolling down
the polential hill. The front velocity, ¢, acts as a frictional stowing, One maximum of
H is localed at he fixed poinl u = u,.

The integral form of the equation can be written concisely as
Glu,v,c,uy)=0.
An envelope solution to (8) is given when

oG G

— =10 and — =20.

auo ac
By the inverse function theorem, this happens only for a trajectory on which » and
v are functionally related, ie.

v = Qu)

which is, of course, precisely the form of the sFOR (15). This is all true provided
oG
av

on the interior of the region for which v = Q(u) is defined.
A number of things now become apparent. Using the the explicit form for G,
d,,G = 0 when

0= —2cv(uy) = dif(uy) = 2P(u,)
dug
since, by definition, we are setting v(uy) = 0. Thus, any envelope trajectory must
include a fixed point of (8) as its initial condition. If we are talking of front solutions,
this means that u, = 1, since w, is thc positive maximum of the potential H,
Hence, the trajectory v = @Q{u) must be the unstable manifold of u,, which must
also include the ground state u = 0 since the potential ‘energy’ must always decrease
along a trajectory. The condition 8,G = 0 holds i and only if v = Q(u) and Q has
at least as many derivatives as P, locally, Conscquently, near u = 0 we may write

2 1 m '
v=q1u+%—q2u'+...+mqmu RN (18)
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From our discussion of phase space, we also know that ncar u = 0
U ~ I\'+e’\+z + W _et-*

whence

v=A, K eM 4 A_KN_ e+
= Aoud Ko (RN (L = aud- g (19)

This means that one of threc things must be true. Either
—=m and q; =0 for 1<i<m

so that (18) and (19) coincide locally, or
K, =20
or
K_=0.
These latter two requirements mean that the expansion for v will have no term like

w3

From the definition of Ay we get

A_ _ - 2u+ /et —dp

+ 2

b

and hence the first condition is equivalent to

2 —2u+e/e®—dp=2mpu.
This may be simplificd

(m+1)* _ &

m H

From our ecarlier analysis of the SFOR, we know m = %(n + 1), and therefore the
first condition for the existence of the cavelope is

EE _(n+3)?
o 2n41)

which, as we will show in the fifth section, is precisely the condition in which the
original ODE yields a non-trivial Lic symmetry, provided p, ;1),, = 0. As was shown
in the second section, A_ is a multiple of A, only when pe, .,y = 0. Thus,.we
have shown that when p, ,,,,» = 0 the SFOR solution is also the envelope solution,
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but not a NG connection. On the other hand, when p(, .,y # 0, we have shown
that the envelope solution is NG, and since the SFOR s the envelope solution, the
SFOR must yield NG connections. Since for any NG connection one of K, ~ 0, an
NG connection separates one kind of phase space motion from another and must
therefore be a separatrix.
What remains to be checked is that
G
G‘U = —8_1;- ;é 0 .

Since only the LHs of (17) depends on v, we can write
G, =2v+2c{u —uy).

G, = 0 only where v = c(uy — u), but for a front trajectory u € u, and v < 0,
while ¢ > 0 for 4 2> 0 in (8). Hence, G, = 0 only at u = u, and v = 0, and this
point is included in the front trajectory only in the limit 2 — oco. Thus the SFOR

v = Q(u)

is valid in (8) if and only if it is the envelope solution of front trajectories defined
above, and this in turn necessitates that it be the NG connection we are looking for.
This shows that the SFOR for fronts and, by virtue of their equivalence, the wrc
" solution, must result in the NG connections.

4. A strongly heteroclinic counter-example

We have shown that existing methods for finding SH connections work only when the
polynomial nonlinearity has a certain form. In this section we will demonstrate that
there are SH connections in equations [or which WrC method does not appear to be
applicable. Thus, nonlinearities which give rise t0 SH connections do not necessarily
allow the WIC method t be applied; these special connections and resulting front
dynamics occur more broadly than our current methods can account for.

For our counter-example, let

Pu) = pu+ u* — . (20

Note that this is not in the class of nonlinearities discussed in the previous section,
since n =5 butd # 2(n+1)=3. Letp 20,0 <u, <y, and Plu,)= Plu) =
0. The ODE defining {ront trajectories is

u,, +eu, +uutu —u® =0, (21)
The linear theory about w_, u, and zero is given by (21) linearized about these fixed
points

. . dP
U, . + cu, + E’;

it=0.
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Here # is the perturbation and 95 = P’ is the derivative of P evaluated at one of
u,, u, or zero. The resulting characteristic cquation is

M4ed+ P =0
or

A= [-C:i: 02—417’].

13—

When £ € 0, both u = 0 and « = u ar¢ saddle points, since P'(0) and P'{w ) < 0.
The point u = u,, on the other hand, is an attracting node, since P'(w,) > 0. This
is also clear from a potential energy formulation of (21). Multiplying (21) by 2w,
gives

d
dz
= L[t 4 H(w) 22)

dz

[uz + ;ru‘“’ + %u‘r’ - %ue]

which is a statement that total ‘encrgy’ along a trajectory must always decrease (for
¢ > 0). The graph of A («) has maxima at v = 0, u,, and a mimimum at © = u , as
shown in figure 3, from which it is clcar that u = 0, u, have both stable and unstable
directions, whereas u = u, is attracting.

H(u)

ve

Figure 3. Potcntial energy, H{u), for the counter-example front problem (25). €
that the potential is not symmetrical, but with j¢ < 0 there are maxima at uw = 0 and
U = U,.

We can now demonstrate the existence of a trajectory starting at u = u,, ending at
u = 0, for some particular speed &. We follow an argument made by Jones, Kapitula,

such that « decreases 10 zero as z — oo, and let w"(u,c) be a trajectory such that
u increases t0 u, as z — —oo. These arc illustrated in figure 4. From the decreasing
energy statement (22) and figure 3, it 1s clear that

u, € w'Nw' forall ¢z 0
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u,;

Iy

w* [u,c) ju=u
|

s o u

I\.l
!

w'{u,c) ] I
' .= glo)
f
| .= flc)
|
|

Figure 4. ‘Trajectories in {25) with ¢ > 0, so thal the energy decreases. The attracting
manifold of zero is denoted by w’ and the repelling manifold of u = u, is denoted by
w". The [unctions g and f correspond 1o the intersections of these manifolds with the
fine u = u,.

Figure 5. Trajectories in (25) with ¢ = 0, so (hat each path traces oul equal-energy
surfaces. Note here that g(0) > f(a).

and therefore we may define

fle) = maxfu.:(u .uw Y E @i el

JAVE) = dlad jle, VL0, ) S W U, T
and

gle) = min {u,; (u,, u.) € wu,c)].

Both f and g are also depicted in figure 4. Since ¢ i8 a damping constant, it i clear
that f'(¢c)} > 0 and ¢'(c¢) £ 0.

Consider the phase space ol (21), pictured in figure 5 when ¢ = 0. Each trajectory
in figure 5 is a contour of equal encrgy, and comparing the contours which contain
u =0 and u = u, shows that

g(0) > f(0)
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when u is close enough to Zero that V(w,) > V(0). On the other hand, when e
is chosen large enough, say ¢ = c' >» 0, a trajectory which begins at u = 1, must
decrease monotonically to u,. The damping is too great for the solution to climb

the potential well at all, and such trajectories are depicted in figure 6. However
f'(e) > 0 implies that

fleh) > F(0) > g(ch) = 0.

Consequently there s a ¢ = & such that (&} = g{(&}, and uniqueness is given by the
sign of the derivatives of f and g. Since different trajectories cannot cross in phase
space, we have '

w'(w, &) = w'(u, &)
and therefore an SH connection must exist when g < 0,

Uz

e ——
g

P

wll

flct)

w*

glc?)

Figure 6 "Irajectories in (25} for large ¢ = c}. Subjected 10 enough damping, a trajectory
leaving u = u, is captured monolonically by the minimum of H, u = uy. This shows
that f(c!} = 0, while dearly g{c') € 0. Somewhere w® and w™ mus) have crossed.

More importantly, this SH connection must be structurally stable. If we append
the equation

4

3 c=10

L]

to (21) so that the effect of varying ¢ can be included explicitly, we have an au-
tonomous system of equations for the dependent variables u and c. In the resulting
phase space, w* and w" are centre stable and unstable manifolds, respectively, and
the above argument with the derivatives of f and g show that these two manifolds
intersect transversely. Because transverse intersection is stable structurally, perturbing
the parameter u cannot destroy the connection. Thus, as we increase p from nega-
tive through zero and to positive, we get a continuous deformation of the original SH
trajectory for u < 0, a sequence of cvents depicted in figure 7. Consequently, there
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u; u,;

NN \<

la) ‘ (&)

Figure 7. (2) The strongly heteroclinic connection
which must exist when g < 0. The front trajectory
must atlach to the strongly attracting eigendirection
beeause that is the only one around. (b) Contin-

u,

u, uous deformation of the strongly heteroclinic tra-
\/ jectory in {a) vields the sH front [or 4 = 0. A
u (very) weakly atlracting direction comes into exis-

\\ tence when g = 0. (¢} The sH [romt continues

lo exist as u is increased past zero, in spile of
the existence of a second, more weakly attracling,
cigendirection. This results in the non-genericity of
the st connection.

te)

exists a y. > 0 so that when p < g SH connections exist in (21). This results in five
types of possible phase spaces for 0 < i < p,, two of which are degenerate, and the
relationships of these phase spaces as ¢ is varied are illustrated in figure 8.

The existence of SH connections in (21) is supported by numerical simulations of
the PDE (1) with nonlinearity (20). As described in the introduction, linear theory
predicts an asymptotic speed for {fronts of ¢* = 2,/u, and no asymptotic speed at
all when p < 0. Using the Fourier-in-space, Runge~Kutta in time numerical method
described in Powell, Newell and Jones [8] we solved (1) with the initial condition

u(z,0) = 2", and diagnosed the local speed of the resulting fronts by evaluating

u
clocal(t) = '171_

T U=uUg

numerically. Here w, was chosen u, = 0.1, and we looked at the final spatial position
where u = u,, corresponding to the speed of a right-moving front.

In the first simulation, we choose 1 = —0.1 to demonstrate that a front solution
does indeed exist when o < 0. Figure 9 is a plot of « against space, plotted at times
t=3n, n=0,...,5 Itis cear from the graph of succeeding slices of the front

that the velocity is positive for ncgative p sufliciently close to zero.

In the second simulation we chose p small and positive, p = 0.09. Here the
linear theory predicts an asymptotic speed of ¢* = 2+/0.09 = 0.6. Figure 10 is
the same as figure 9, except for the difterence p = 0.09. Figure 11 is a plot of
Clocai(t) for the duration of the simulation. Note that ¢, converges nicely, but
to some ¢ = & > ¢* = 0.6. This illustrates both that the SH front exists in this
parameter regime and that it is an asymptotic state. Figure 12 is a plot of Clocal(l)
for u = 1, which is above threshold for the onset of linear fronts. Notice that here
Clocal = €" = 2.
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/AN AN )
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la) (&

tel gt

b Figure 8 "The complete picture of possible front

behaviours as the front speed is varied, for 0 <
# < pe. This sequence of behaviours was first
u noticed by Jones [12] and was discussed in detail
a.\ \'// by Powell [8]. (@) For ¢ < 2,/ = ¢* the fronts
W are oscillatory. (b) At ¢ = c¢* the pliasé space is
degenerate, and the front approaches zero from the
negalive side, tangential 1o the degenerate eigendi-
rection.  (€) When ¢* < ¢ < ¢, the front has
generic behaviour and approaches zero along the
weaker direction, but it does so from the nega-
tive side. {d} At ¢ = & the sH front exists. (¢}
For ¢ > & the fronis are once again generic, and
approach zero from the positive side.

Lel

As far as we know, there is no analytic method for finding the sH [ront with speed
¢ and non-generic behaviour. In fact, because of the non-generic behaviour it is even
hard to find these fronts numerically in (21), since onc must look for a tangential
intersection of two one-dimensional manifolds, ncither one of which is attracting.
Of course, a shooting method could determine & if not the form of the front,
and then the linear dispersion relation would determine the asymptotic approach
to zero by evaluating A_(&). This is enough to determine numerically the cutoff
value p. above which the linear fronts arc preferred using the steepness criterion
from the introduction. Nevertheless, any hope that the wTC method, SFOR, or some
related methods might prove to be ‘magic bullets’ for determining SH connections
appears to be unfounded. In the previous scction we showed that these methods
only work for particular scts of nonlinearitics in P(u), and in this section we have
shown that SH conncctions cxist outside of the class of equations with these kinds
of nonlinearities. In the next section we will apply classical methods for determining
Lie symmetries to try and understand what is so special about the WTC-amenable
equations of the form (8).
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Figure 9. Suberitical fronts in 1he counter-example (25), for p = —0.1. The plot is of
front amplitude at several different times, versus r measured in multiples of m. The
specd is positive, as proven in seclion 4, and this numerically confirms the existence of
an SH connection in {25}, since both zero and w = wu, are hyperbolic points.
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Figure 10. The strongly heteroclinie froats which exist as the asymptotic front state for
= 0.09 < uc. Fronls are plotted for several different times in amplitude versus ¢ in
multiples of . The initial condition is Gaussian, while the [ronts which resull converge
10 a speed greater than the lincar marginal speed ¢* = 0.6.

5. Symmetries and fronts
We have seen that the rcaction—diffusion equation
2
w, = “u+u.r-r+pl1t+l)/‘2u(n+“/' — (23)
exhibits, in certain paramcter regimes, fronts corresponding to strong heteroclinic
connections. These connections can be lound using the WIC method, or equivalently

the van Saarloos SFOR. It is natural to ask il there are any symmetry properties of
(23) that might reveal, o priori, the possibility of a strong connection. As  will be

o
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Figure 11. Behaviour of local (in time) front speeds for ¢ = 0.09 (represented by curve
A). Curve B converges to ¢” as the inverse of time, while the diagnosed speeds clearly
converge to some € > ¢* = 0.6. Again, this demonstrates that SH fronts exist for the
counter-example system.

described beiow, traditional symmetry methods yieid littie insight into this question,
although a recent extension to the wTC method (Cariello and Tabor [10]) does show
how the SFOR is related to a type of similarity transformation.

Application of standard Lie symmetry methods to (23) shows that the system only
admits a trivial two parameter group corresponding to tranlation in ¢ and t, ie. the
equation is invariant under the transformations ¢, = v+ a¢, {; = t+4 be and u; = u,
where a and b are constants and ¢ is the group parameter. This confirms the fact
that z = z — ¢t is a group invariant, from which follows the standard travelling wave
reduction

U, + cu, +pu+ p(n+1)/2u(n+l)/2 —ut=0.

Such a group invariance is an obvious, if not only, prerequisite for the existence of
travelling wave fronts.

The only additional symmetry exhibited by (8) arises when p(,,,,, = 0. (How-
ever, for the case n = 3, an additional symmetry is found for one special value of
p;—we do not pursue this special case here.) When p(, (), = 0, we introduce the
standard infinitesimal transformations

2y =z + ef(u, z) + O(€?) and u, = u+ enu, z) + O(?)
where ¢ is the group parameter and £ and # are accorded the standard forms

£(u,z) = f(2) and n(u, z) = g(z)u.
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Figure 12, Local behaviour (in time) ol front speeds for the Gaussian initial condition
wher g =1 > pc. In this case, the sH [ront does not exist, and (he speeds converge
nicely to the marginal speed ¢* = 2. Curve A represents diagnosed local front speeds,
while curve B is a4 reference curve which converges 10 ¢* as the inverse of time,

It is straightforward to show that f and ¢ must satisfy the equations

291_fll+cff=0 g1l+cgt+2“'ff=0

From these equations one can deduce that
E(u,z)=ae? + b

and
nlu,2) = —ubye?? .

Here « and b are constants and

— 2¢
7=C(n+;) and b= — “
n

provided that

-

]

o(n+d
w o 2An+1)

-~

2 ’
l-n)f'

(24)

(25)

This condition for the existence of the non-trivial group (a 7# 0) is the same condition
for equation (8) to have the Painlevé property. (The case a = 0, b # 0 corresponds

to the usual translational invariance.)
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The global transformations associated with (24) and (25) are (setting ¢ = 1,
b=0)

7=z — %log(] - evye¥) (26)

and
u.o o= ull — e~ S¥Ey=O/ . 7
i \ ! J 2N

Eliminating ¢ between these reveals the invariant combination ue®?. This suggests
introduction of the transformation

u= Ac™!* F(e %)
which reduces (8) to

A N-1
o . F* = (28)

where * denotes differentiation with respect to the variable e=7*. As nice as this addi-
tional symmetry is, it clearly has littie to do with the existence of strongly heteroclinic
connections, since the case of p(,41,,, = 0 is preciscly when such connections do not
exist. (This symmetry might, however, provide 'a rationalization for the observation,
made in the third scction, that only when p, 4.y, = 0 does the Taylor-expanded
wTC solution choose a balance between the two lincar cigendirections.) Below we
shall show that the transformation leading to (28) is contained naturally in the WTC
expansion. -

Recent work by Cariello and Tabor [10] has shown that therc are connections
between the wiC method for non-integrable cvolution equations and certain sym-
metries. This comes about because the constrained singular manifold used in the
wIC method can be shown to play the role of a similarity variable. Although this
idea was introduced for PDE, it can also be carried through on the oDE (8). Use of
the truncated expansion (6) throws away a lot of usclul information—cespecially that
contained in certain arbitrary coeflicients that can be found (for the constrained ¢)
at higher orders of ¢. Some of this information can be recaptured by making the
ansatz (thc ‘rescaling ansatz’ )

_ alz)
T a(2)”?

which corresponds to a partial resummation of the full WIC expansion. Substituting
(29) into (8) and introducing the variuble F(¢) = f{@)/¢* yields

u

(o) (29)

6. [F" = BB+ D F") 4 pruys,o V(B + D8 |17+ AR =0, (30)

wwaias AN H O Do R 4

The S}")P(‘iﬂ] form of ¢ means that ¢ can he !'(;plé!@ﬁ_fd hy 0((}3 — 1), [hCI’be making
(30) a non-autonomous ODE with ¢ as the independent variable.
Equation (30) has somec interesting propertics. Firstly, note that ivhas the special

pole solution

Flo)y=ao7"
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which returns the known front solution (11). Sccondly, in the limit ¢ — oo (recali
that z is the travelling wave variable = = = — c¢t), ¢, vanishes and (30) reduces to

F + ,@F(n+l)/2 =0.
Recalling that w = « F, this can be transformed back to the original variables to yield

wmHN/2 o g

8+1

which is exactly the van Saarloos SFOR. Thus this reduction can be seen to correspond
to an asymptotic limit of a type of ‘symmetry’ transformation. Traditional group
methods tell us that only when p,, 1y =0 is ue®® a group invariant; whereas the
rescaling ansatz reveals that this is still a useful combination even when p, ,1y/2 # 0
and the particular group is apparcntly absent. In the case p(,41y,2 = 0, our reduction
simplifies to

fl_ﬁ(ﬁ+1)F7lzG

which is equal to (28) when an appropriate choice of A is made. Thus, in some
sense the ‘symmetries’ inherent in the rescaling version of the wIC analysis include
the traditional, continuous groups.

6. Conclusion

The previous section shows that none ol the ‘normal’ continuous or discrete symme-
tries seem to give rise to the cquations for which the Wrc method works. However,
a ‘similarity” analysis based on thec WTC approach secms to capture a kind of ‘asymp-
totic’ symmetry of which we have no understanding. We have classified that subclass
of equations of the type (1) for which known methods work, and within that class
presented a tabulation of when the resulting front solutions are non-generic and,
in particular, strongly hcteroclinic (1), The SH structure and jts resulting dynamics
exist outside of this class. Our results are therefore somewhat negative; we know
what current methods cannot do lor cquations of the form (1), and we know that
neither the discrete or continuous symmetries give risc (0 cquations of the form (8).
However, our ‘negative’ results clcarly define some extremely interesting questions.
What symmetrics, if any, are encapsulated in equations like (8)? Why should a con-
strained singular manifold expansion have anything to do with topological properties
in phase space? Do similar results hold for ‘kink’ and ‘soliton’ solutions obtained
using the WTC approach? And can the wiC approach be extended to work outside
of the special class we have described? We now know that the WITC trajectories are
not merely integrable artifacts in non-intcgrable systems; they can be dynamically
important. Therefore, understanding these trajectories will show us something deep
and unknown about the physics of non-integrable systems.

On the ‘positive’ side, we have shown that the SFOR and hence the wiC method
do capture separatrices and SH connections when they exist. This in itself s pleasing,
because separatrices are the skelcton of phasc space. In the context of reducing
infinite-degree systems (like PDE) to finite-order systems (like the ODE we have dealt
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with here), these solutions are important organizing structures in the dynamical be-
haviour of the PDE. ODE scparatrices act like fixed points in the infinite-dimensional
phase space of the PDE, and even if they are unstable they still direct the behaviour
of the transients along their unstable manifolds. With a method in hand to find
these functional fixed points, it is possible to develope a more complete analytic
understanding of non-integrable, nonlinear PDES.
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