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Non-generic connections corresponding to front solutions 

James Powellt and M Tdbort 
Department of Mathematics. Univenity of Arizona. %son, AZ 85721. USA 

Received 6 November 1991. in final form 13 February 1992 

Abslrud. A classification or special 'nonlinear' front solutionS for certain one-lime and 
one-space reaction4lfusion equations is prcsenled, using Ihe melhod of Weiss. Btnr 
and Camevale (m). n e s e  resulis are related lo known stability aileria, in particular 
lhe steepness clilerion of van Siiarloos. 'k wc melhod is shown 10 be equivalenl 
10 a special l int-order rcduclion. and Lath of thcsc methods are shown to work for 
waction-dilfusion qu;$tions will, special nonlinearilies. Of panicular inters1 is lhe facl 
[hat the special l i r s l ~ , n l e r  reducliun is shown to give separatricer in appropriate phase 
spaces. An Biampie oi il maction-ditiusion equation is presented wilhoul lnese speciai 
nonlinearilies. While this cqualion is shown to have a special 'nonlinear' mnnection and 
resulting stability properties, i t  is intrautahle for eiiher a singular manifold expansion 
or a Ont-ardcr rcduclion. A I j c  symmrtry analpis is  mmied out. and il is  shown that 
equations with mntinuous p u p s  other t l i i in tmnliltional invariance are only a subclass of 
equations which are :m"ible lo  the speci;il solulion techniques. However, the 'rescaling 
ansat? of Caliello and lhbor suggests th i i l  mrnr symme1"cn arc present. 

1. Introduction 

For years attention has been focused on front solutions to redction-diffusion equations 
of the form 

with 
n 

P ( u )  = C P j U J  
j=1 

In particular, such equations arise in the theory of first- and second-order phase 
transitions. A Cront solution connects any two steady, spatially invariant states with 
an interface moving at constant spccd c. Thcrcforc a front may be written in the 
form 

U = U (  :c - c t )  

t Permanent address: Depanmcnt 01 Mii tht" t ia and Statist ics, Ut:ih Stale Univcnily. lagan. UT 84322- 
3900. USA. 
$ Pennanenl addrcss: Division of Applied Malhcmi~tics, Departmcnl of Applied Physia, Columbia 
University, New York, NY 10027, USA. 
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With the change of mriables z = z - ct, a front satisfies the ODE 

J Powell and M Tabor 

u : z  + C U I  + P( U )  = 0 

with boundary conditions 

U - us as r - i t m ,  P(u, )  = 0 

U - uu as z + ~ t m ,  P(u , )=O.  

Normally, us is taken to be a StdblC state of (1) at z = -tm, while uu is taken to 
be the (unstable) ground state, uu = 0. In this context, a front represents a change 
between two states, one characterized by U = us and the other by the ground state. 

Interest in equations in the form of (1) began with the works of Fisher and 
Kolmogorov 11, 21, who independently examined the equation 

(3) U, = U + UIS - 713 

which models the spatial spread of some selective xenotype through a population. 
In (3), U = 0 corresponds to a population without the selective adaptation, which 
is unstable through the process of natural selection. Given even a hint of a new, 
selective mutation, the corresponding genotype increases in probability and spreads 
through the population over time. This 'spread' is equivalent to a front solution of 

Kolmogorov 121 showed that small, compactly supported initial conditions always 
evolve into fronts with a certain preferred vclocity, c = c* = 2.  This means that a 
selective mutation spreads through a population a t  a characteristic speed, independent 
of its initial distribution. Kolmogorov's argumcnt is based on the method of steepest 
descents, applied to an integral representation of solutions to the linear portion of 
(3). Dee and Langer [3] and Ben-Jacob ei a1 [4] presented an equivalent argument 
based on considering the unstable modcs of U = 0 in (3). If  

(3). 

U - exp [ut + ik(:e - ci)] 

then the linear portion of (3) givcs the dispersion relation 

U = ick + 1 - k'. 

Dee and Langer conjecture that the mode 12' with maximum growth rate will dominate 
the development of the far licld, and hence determine the asymptotic behaviour of 
fronts. Maximality givcs the condition 

Secondly, they argue that in the frame of refcrencc travelling with the stable, asymp- 
totic Eront, the growth rate should be zero, or 

o ( c * , k * )  = ic*k. + 1 - (k.1' = 0. 

These two conditions give 

(k*)? = - 1  
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and 

c* = 2 

for a front connecting us = 1 at z = -m to U“ = 0 at z = 00. 

depends on the linear portion of (1). In general, all equations with linear part 
One striking feature of the Dee and Langer-Kolmogorov analysis is that it only 

U t  = MU + uzz 

select the same asymptotic speed C* = ?fi (writing p ,  = p in (1)). The form of 
the nonlinearity plays no role. In direct contrast, van Saarloos [S, 6, 71 presented 
examples in which an asymptotic speed E # C* is chosen by the PDE. In particular, 
for two equations 

ut = Uzr + LLU + .U2 - U:’ (4) 

and 

the special first-order reduction ansatz 

d u  
d r  
- = y( U )  

gives a special, ‘nonlinear’ solution. This nonlinear solution is steeper, faster, and 
.... mnre . . . stnhle . than ...-. . the .. . ‘linear’ . . . . . -. Knlmngorov . .. . . .. . tr!!n! in some paramp!er regimesl ???est 
results led mn  Saarloos to present a selcction criterion based on steepness. His 
criterion is that the dynamically prcferrcd front is thc front with steepest asymptotic 
spatial approach to zero. In some parameter resimcs, he shows, the linear front is 
steepest, while in others the nonlinear Iron1 k steepest. 

Powell et a! [8] expanded on van Saarloos’ work. Firstly they suggcsted that 
van Saarloos’ steepness criterion is equivalent to a maximum temporal growth rate 
criterion in the tail of fronts. Secondly, they showed that the nonlinear front is a 
continuous deformation of the unique front which exists whcn p < 0 (for more on 
these unique subcritical fronts, sec Jones CI o/ 1121). Whcn the nonlincar front is 
preferred, it is a non-generic, ‘strongly hetcroclinic’ (SH) conncction. By non-generic 
connection we mean a heteroclinic connection which begins and ends precisely along 
an eigendirection of its lixed points. In thc SI-l  case the conncclion is to the strongest 

extension of the methods of Wciss, Tabor, and Carncvale (WK) give the same unique 
front This method is based on a ‘constrained’ expansion about a ‘singular manifold’ 
in complex space-time, and yields a variety of solutions, including lronts, whcn the 
expansion is restrictcd to real space-time (sec Carriello and Tabor [9, lo] or Powell et 
a[ [SI Cor more details). Caricllo and Tabor 19, IO] also showed that this modified wj-c 
method is equivalent to other special solution techniques, such as Hirota’s method, 
for these systems. 

In light of the above work the intentions of this paper are fourfold. First, for all 
equations of the form (1) we will identify the situations in which the wrc approach 

a::;-,a;ng e@ndiiectia.l 2i = 0 jr7 (21, Third$, these ai;thGrs shc;wcd :kzi aa 
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works and what kinds of phase-space connections it produces. In particular, we note 
when the method yields strongly heteroclinic connections which result in asymptotic 
fronts according to the steepness criterion. Secondly, we will show that van Saarloos’ 
first-order reduction 171 and the wrc method are equivalent methods for lionts. 
This makes the classification of possible connections exhaustive within the class of 
presently obtainable exact solutions. But more importantly, we will show that the 
special first-order reduction must always yield separatrix solutions, which a re  non- 
generic. It therefore may be possible to capture the skeleton of phase space using 
either the wrc method or  the special first-order reduction. 

In section 4, we will introduce an  example of a reaction4iffusion PDE for which 
the wrc method does not work. We will also show that this wrc counter-example 
has strongly heteroclinic connections in non-trivial parameter regimes, using conti- 
nuity arguments in the ODE phase space. Numerically we will demonstrate that the 
special connection dominates in some parameter regimes. Consequently, we show 
that although the wrc method can select strongly heteroclinic connections in many 
cases, it cannot capture all of the special connections which exist. 

In the final section we will use Lie symmetry methods [ I l l  to y and determine 
if there a re  any continuous groups that correspond to the class of wrc-amenable 
equations. As it turns out, only a subclass of the wrc-amenable equations have non- 
trivial Lie symmetries. In addition, discrete symmetries such as the U - -u symmetry 
do not appear to play any signilicant role. However, use of a rescalinghesummation 
extension of the Wc method suggests that certain ‘symmetries’ may be present. 

J Powell and M Tabor 

2. The wrc method for fronts 

Cariello and n b o r  [Y, 101 demonstrated that a modified wrc method can give front 
solutions to (1) when F (  U )  = U - 71’. Powell ef a/ [SI showed that the method 
also gives front solutions for P(u) = pu + u3 - u5.  The basic approach for front 
connections in (2) h to examine the behaviour of U near a singularity in complex z.  
We assume that a t  a pole the solution behaves as 

where p is a power to be determined and 4 - 0 at the singularity. The use of (6) can 
be thought of as the extreme truncation of a Laurant expansion about the singular 
manifold + ( r )  = 0.  ’lb determine the power /5 we ask that the largest nonlinearity 
in (2) balance the hading derivative, which gives 

p ( p +  I)a(&,)“-”-’- /J,,a”4 -r,y 

and hence implies -p  - ’2 = - ( I / %  This gives the power 

7 p=:, 
11 - 1 

Knowing the ‘leading balance’ allows us to solve (2) following 19, lo]. Separate 
equations appear at orders $-”, dJ-”-’ and $-I3 - ’ ,  whence 

p j  = 0 for j # 1. ( 11 + l ) / ? ,  t i .  (7) 
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The order of nonlinearity n must either be 2 or odd. Permissable distributions of 
nonlinearities occur in (3), (4) and (5);  another acceptable form is 

P ( u )  = p u +  u4- U'. 

Since. P ( u )  can have only three terms, without loss of generality we can always 
xscale lP,I = lP(n+l)/2 I = 1 (provided P ( , + ~ ) , ~  # 0). We will write p1 = p, and 
note p, = -1 smce. p > 0. The canonical form of the WK-amenable travelling 
frame ODE is thus 

(8) J n + 1 ) / 2  - = 0 .  u z z  + cuz + Pu + P(n+i)/a 
Following [9, 101, we find 

with 

( 2 p + i j j , =  *P(?L+l)/z - C P  ' 

Solving simultaneous equations for c and X gives 

With algebraic manipulation and translational invariance, the wrc method gives a 
solution- 

where ap = X and us satisfies P( us)  = 0.  
We may write the wc  solution as 

Differentiating (12) with respect to z and using the special form of 6, we now see 
that the wrc solution is precisely in the form of van Saarloos' first-order reduction, 
namely 
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What we are interested in knowing b this: when does (11) correspond to a strongly 
heteroclinic (SH) trajectoly, and therefore an asymptotic [rant due to the steepness 
criterion? In general, as z - a3 for a front solution U 

U - l<+(c)e,'+' + I<-(c)e,'-2 

where 

Consequently the dominant, generic asymptotic behaviour of a front is U - eA+" as 
z - M. A non-generic (NG) front satislies either f < + ( c )  = 0 or f i_(c)  = 0.  The 
SH is an NG connection to the strong eigcndircction (/i+(c) = 0). When it exists it 
is steeper than any generic front and b thcrclorc the asymptotic front state. These 
three distinct situations are illustratcd in figure 1. 

". 
1 

U% 

t 

U, 

Figure 1. Possible wnnections bewren the fmed 
poinu U = U, and U = 0 in lhe phase space of 
cqu;ition (2). (a) Generic mnnection asymplolic 10 
~ h c  wcakcr cigrndirrclion mrresponding to A + .  (b) 
Non-generic (NC) mnneclinn direclly lo the weaker 
cigcndircclion. (c) Strongly lhetcroclinic (SH) mn- 
inrction 10 1111: strong cigcndin'rlian. corresponding 
IO A-. 

U 

We now set about determining i l  ( I  I )  is S I I .  k t  i: denote the spccd given by (10). 
Expanding (11) gives 

11 = U, c o ~ 2  - peo(O+ll + . . .1 , I 
The solution U is SI-l when 

up  = A - ( ? )  
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and o p  = X-(E) (replacing X with up  in (9)) whcn 

Here the * is the same as (+) in equation (9). This gives the possibilities shown h 
table 1. 

Tnblc 1. Summaly of pssiblc r c s ~ l i b  

P("t1)lZ P i in (Y) Hcsuli 

0 All - NG conncclion iinpassible 
< O  / I < O  No solution 
< O  / I > O  - NG conneclion impossible 
> O  I' < IL, - s i  mnncclion, ti+ ( C )  = 0 
> O  / ' > P c  - ti= conncclion, ti-(?) = 0 

NG connections are possible only whcn ) I ( , , + ~ ) / ~  > 0, and select the strong eigen- 
direction (are SH) only when 

This latter condition comes rrom rcquiring the LIHS ol (14) to be p i t i ve .  
It is easy to test that when u.0 + A - ( ? ) ,  00 = A+(:). This raises another 

question, however. When n p  = A + ( ? ) ,  what about the second term in the series 
expansion of (11):' Is u ( p  + I )  = A - ( ? ) ,  and so  docs the wrc method choose some 
precise balance betwccn the linear eigcndircctions'! 

We find a ( P +  1)  = A-(;) whcn 

2p + 3 

Squaring both sides and eliminating common terms gives 

- $"+I ) / Z  = 
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This can only be satisfied when pia+,),? = 0 or ii = 0. As we will show in section 5, 
this corresponds to the class of equations which exhihit non-trivial Lie symmetries. In 
other classes of equations, when ap = A+(:), it turns out that a ( p +  1 )  > A- (+  
The second linear eigendirection is not involved, since I(-(:)  = 0 in these cases. 
Thus, it is fair to say that w C  gives a non-gcneric heteroclinic connection (in the 
sense that one of [ < * ( E )  must be zero) when all three terms of P ( u )  are non-zero. 
When l i + ( S )  = 0, these solutions arc particularly interesting because the resulting 
SH front is the asymptotically selected front. 

I Powell and M Ebor 

3. Equivalence of wc and first-order reduction 

In the previous section we have shown that the WTC method for fronts is restricted 
to equations with three terms in Quj, of order U, U C " T ~ ~ / '  ana U'. .we nave ais0 
shown that the w c  class of solutions is a subclass or solutions given by using a special 
first-order reduction (SFOR). The question we turn to now is: are any further solutions 
possible using the SFOR? It seems that thc answer is no, and that SFOK and the WTC 
method work only in the same circumstances. Moreover, in this section we Will also 
show that the SFOR will always give separatrix-type solutions when p, , ,+,) ,?  # 0. 

the form 

I.. , 1 > 1 0  

IL :-...I,..-,.-. uuplwucmi jii SFOR, w a ~ j i i i i i e  ih%i ihe fiioni iiajccioiies aii be wiiiieii ui 

and (2) becomes 

gg' + CQ + P(u) = 0 (16) 

a new first-order system with independent variablc 71 and dependent variable g. 
Attempting a series solution to (16), Ict 

N 

I=1 

Substituting into (16) gives a rccursion relation at order u21+' 

and at order 7 ~ ~ '  

Here we have used the convention p, , ,  = 0 when nz > 7 1 .  Notice that if P has 
reflectional symmetry ( P (  U )  = - P(  - U)), then a11 even terms in the expansion for g 
must be zero. Since the above recursion relations involve products only of even and 
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odd terms in the series for g ,  the entire summation will be  zero for sulliciently large 
k. From this it follows that the series must truncate, 

In the general case, where P may have no special symmetry, the m t h  coefficient 
of the power series is growing as n~ - 2 if it is non-zcro, due to the summation on  the 
RHS of the recursion relations. The  resulting series c a n  converge only conditionally 
in U. P ( u )  is, however, analytic in U ,  and therefore we expect no  less than global 
convergence from solutions to (16). Consequently, the series for g must truncate. 

Let N be the number of terms in thc polynomial for g,  i.e. 

nr 

In general, unless the cocllicients of P are chosen in some special fashion, the 
recursion relations give N + N - 1 > n indcpcndent algebraic equations. However, 
there are only N + 1 unknowns, if we c o u n t  the speed c as an unknown. Hence, 
SFOR only works when 

N + 1 > N + A' - 1 

01  

2 > N  and n $ 3 .  

At this point it is clear that the SFOR Cannot work for just any polynomial of 
order n. However, it has been shown that the SFOR works for cquations like (5).  
Therefore it is possible to choose P ( U) so that SFOR w o r b  when n 2 3. At the very 
least g must have two terms, y, and y N ,  with 2 N -  1 = 1 1  and therefore I I  odd. This 
results in three equations, at orders U, u N  and U?+], for the three unknowns gl ,  
g N  and c. Adding any other term g, where 1 < 1 < !V, must add at least two more 
equations, resulting in five equations and only rour unknowns. From this analysis, it 
becomes clear that the most general case in which SFOR works is 

and 

N ' >A , - ,  f (  U) = / I l l  + / ) N U  - 71- . 

These are precisely the same circumstances in which the wrc method gives a solution. 
Moreover, SFOK must always give the sdmc solution as wrc. Equdtion (15) is 

separable, giving 

Integrating both sides gives 
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and inverting to find U in terms of : gives 

I Powell and M Tabor 

It is easy to see that this is equivalent to (11) with p = 1 / ( N  - 1) = 2 / ( n  - I), 
a = (it- ijg, and us = \ l g l l / g N )  . 

This analysis shows that the classification givcn in the previous section is exhaustive 
among the special solutions we know how to get. The wrc method and SFOR give 
precisely the same solutions in all circumstances where they work. We will now show 
that the SFOR must always give a separatrix-type solution, and consequently an NG 
connection when Y ( , , + ~ ) ~ ?  # 0. However, as we will see in the next section, there 

which means that the existence of an SFOR is sulficient, but not necessary, for a 
NG connection to exist. The connection bctween SFORS and separatrices can be 
seen by recognizing Khat SFOK solution(s) are singular in that they depend on only 
one, as opposed to WO, arbitrary parameters. From the standpoint of the original, 
second-order ODE, the separatrices correspond to envelope solutions and are thus, by 
"CLIIII,L"I,. U " ~ Y 1 C l 1 .  

I ,  , 1 l R  

8ie defii,iie;Y jH coi,neci~ons in equaiions fOi \iip,iif, .*Tc ai,d SFOX aie u-,iiappiicdbie, 

A,%fi":+:^" ^:.."..In. 

Let 

d H  
d u  
- = 2P(Zl)  

with 

H ( 0 )  = 0 ,  

We may rewrite the front ODE (8) in intcgral form 

I -  , . u ' + ? c  v - d z =  i i(u, ,j-  i i i u j  Lo 
where 

d u  
d f 

U = -  

v ( z o )  = 0 and u ( f o )  = 7 ~ ~ .  This may also bc written as 

which is a statement about the monotonic dccrcasc oi total 'energy' on the poteniiai 
surface depicted in figure 2. Using a changc o l  VarkdbkS, the above expressions 
become 

(17) 
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H(u) 

I 

I 

Figure 2 n i c  polcnlial energy, P I ( " ) .  Fronl mjeclories act like a ball mlling down 
Ihe polrnlial hill. The lion1 vchrily, c, acls as a f"ric1ionnl slowing. One maximum of 
H is localed 81 Ihc I'ued poiill U = U,. 

The integral form of the equation can he written concisely as 

e( U ,  I ) ,  c ,  U , , )  = 0 . 

An envelope solution to (8) is given whcn 

ac and - = o .  ac 
8% dC 
- = o  

By the inverse function theorem, this happens only Cor a trajectory on which v and 
U are functionally related, i.e. 

v = &(U) 
which is, of course, precisely the form of thc SFOH (15). This is all true provided 

ac 
- # O  a 

on the interior of the region for which II = Q ( u )  is defined. 
A number of things now become apparent. Using the the explicit form for G, 

au0G = 0 when 

d l - l (u  ) 0 = -2cu( U , , )  = = 2 / J ( l l o )  
d 7 l o  

since, by definition, wc are settins 7 > ( u 0 )  = ( I .  Thus, any envelope trajectory must 
include a fixed point of (8) as its initial condition. lr we are  talking of front solutions, 
this means that U,,  = us, since 11% is thc positive maximum of the potential H .  
Hence, the trajectory z? = &(U) must be thc unstable manifold of us, which must 
also include the ground state U = a sincc thc potential 'energy' must always decrease 
along a trajectoly. The  condition = 0 holds iT and only if v = Q(u) and Q has 
at least as many derivatives as P, locally. Conscqucntly, near U = 0 we may write 

1 
171 ! (18) 11, v = q,u + &?U? + . . .+  -qv>,u + " '  . 
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From our discussion of phase space, we also know that near U = 0 

J Powell und M Tubor 

U w f I<-&: 

whence 

U = A+IiteA++" + A- 1i-e": t 
= ~ + u  + Ii- ( A -  - A+)?lh-/h+ f ,  , .. 

This means that one  of threc things must be true. Either 

A- - = m  and  q ,  = 0 for 1 < i < m 
A +  

so that (18) and (19) coincide locally, or 

I<+ = 0 

or 

n 
li- = O .  

tter two requiremt 

..\-/A+ 

mean i t  th 

From the definition of A, we get 

and hence the first condition is equivalcnt to 

c 2 - 2 p  + c d m  = 2 l ? l / L .  

( m  + I ) ?  c? 

This may be simplified 

= - .  
? ) I  11 

2xpansio U will 

(19) 

I like 

From our earlier analysis of the  SFOH, we know i n  = l(n f 1). and therefore the 
first condition for the cxistence of thc cnvelopc is 

cz ( n  f 3)' - -  - 
P 2(11+1)  

which, as we will show in the fifth scction, is prcciscly the condition in which the 
original ODE yields a non-trivial Lie symmetry, provided p( , ,+ , l12  = 0. As was shown 
in the second section, A-  is a multiplc of A, only when p ( , , + l l 1 2  = 0. Thus, we 
have shown that when p( , ,+, , ,?  = 0 thc SFOH solution is also the  envelope solution, 

P 
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but not a NG connection. On the other hand, when P ( , , + ~ ) , ~  # 0, we have shown 
that the envelope solution is NG, and since the SFOR is the envelope solution, the 
SFOR must yield NG connections. Since for any NG connection one of I<* -+ 0, an 
NG connection separates one kind of phase space motion from another and must 
therefore be a separatrix. 

What remains to be checked is that 

1c "U 

G, = - # 0 .  a 
Since only the LHs of (17) depends on 7 1 ,  we can write 

G, = 2v + 2 c ( u  - u o )  

G, = 0 only where v = c(uo - U ) ,  b u t  for a front trajectory U 6 uo and U < 0, 
while c > 0 for fi 3 0 in (8). Hence, G, = 0 only at U = us and v = 0, and this 
point is included in the front trajectory only in the limit z - CO. Thus the SFOR 

v = &(U) 

is valid in (8) if and only if it  is the envelope solution of front trajectories defined 
above, and this in turn necessitatcs that it be the NG connection we are looking for. 
This shows that the SFOK for fronts and, by virtue of their equivdlence, the wrc 
solution, must result in the NG connections. 

4. A strongly heteroclinic counter-example 

We have shown that existing methods for finding stl connections work only when the 
polynomial nonlinearity has a certain form. I n  this section we will demonstrate that 
there are SH connections in equations for which wrc method does not appear to be 
applicable. Thus, nonlinearities which give rise to SH connections do not necessarily 

dynamics occur more broadly than our current methods can account for. 
ajjo-w iiie .*?i.c method io be appi ie& these SP&i mnneci~ons reSuiiing ftoni 

For our counter-example, let 

P ( u ) = p u + u 4 - u ~ .  (20) 

Note that this is not in the class of nonlinearities discussed in the previous section, 
since n = 5 but 4 # f ( n +  1) = 3 .  Let p 2 0 , 0  < 11" < U ,  and P(u,) = P ( u 3 )  = 
0. The ODE defining front trajectories is 

U; + cu2 + pu f 71' - us = 0 .  (21) 

The linear theory about 71.; uii and zero is given by (21) linearized about these fixed 
points 

d P .  
d u  

uaz + cu, + -U = 0 
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Here ii is the perturbation and 
us. U" or zero. The resulting characteristic cqiiation is 

J Powell flnd M Tobor 

= I" is the derivative of P evaluated at one of 

x 2  + C A  + P' = 0 

01 

When ~1 < 0, both U = 0 and U = us arc saddlc points, since P'(0)  and P'(u,)  < 0. 
The point U = U " ,  on the other hand, is an attracting node, since P ' ( u , )  > 0. This 
is also clear from a potential energy formulation ol (21). Multiplying (21) by 2U2 - eives 

which is a statement that total 'encrgy' along a trajectory must always decrease (for 
c > 0). The graph of H ( u )  has maxima at U = 0,u, ,  and a mimimum at U = U " ,  as 
shown in figure 3, from which it is clcar that 11 = 0 ,  U, have both stable and unstable 
directions, whereas U = U, ,  is attracting. 

Wu) 
t 

I. rigure 3, i'oicniiai &gy, i i i u i .  tor iiiu aiunirr-rxumpir ironi probirm (Zj. 
lhal Ihr polential is no1 synimclricul. ~ U I  will) 1' < 0 lhere are maxima a1 U = 0 and 
U = U,. 

We can now demonstrate thc existence of a trajectory starting at U = us, ending at 
U = 0, for some particular speed 5.  We lollow a n  argument made by Jones, Kapitula, 
and Powell for a similar equation !12!. Let W ~ ( I L ; C )  be a trajectory at some speed c 
such that U decreases to zero as z - oci, and let ~ U " ( U , C )  be a trajectory such that 
U increases to us as z - -m. Thcsc arc illustrated in figure 4. From the decreasing 
energy statement (22) and figure 3, it is clear that 

U" E 7 2  n wU lor all c 2 0 
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Fkurc 4. Pajeclorics in (25) with c > U ,  so thal the energy decreases. The attractink 
manifold 01 zero is dsnolCd by 10' and the rcpclling manifold of U = us is denoled ly 
U'". Ilw Onctions 9 and f correspond to  tile inletsections of lhese manifolds with lhe 
line U = U". 

4 = U. 

.... n 

' B I O I  

Figure 5. 
surfaces. Note here thal g(0) > f ( 0 ) .  

Trajectories in (25) will1 c = 0. so that each path traces ouI equal-energy 

and therefore we may define 

t-/">- .-.".,l. .  ./.. .I I C  .... U,.. ,.>l 
, ~ c J - - " l ~ L " l L L I , \ L l y , L L I J ~  < I ,  {<..GI, 

and 

g ( c )  = inin[uT;(u, , ,u2)  E ' w s ( ( u , c ) ]  . 

Both f and g are also depicted in ligilrc 4. Sincc c is a damping constant, it is clear 
that f ' (c)  > 0 and ~ ' ( c )  < 0. 

Consider the phase space ol' (ZI), picturcd in ligure 5 whcn c = 0. Each trajectory 
in figure 5 is a contour of equal energy, and comparing the contours which contain 
U = 0 and U = us shows that 

O(O) > j ( o j  
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when p is close enough to 'zero that V(u,) > V ( 0 ) .  On the other hand, when 
is chosen large enough, say c = ct >> 0, a trajectory which begins at U = us must 
decrease monotonically to U". The damping is too great for the solution to climb 
the potential well at all, and such trajectories are depicted in figure 6. However 
f ' ( c )  > 0 implies that 

J Powell and M Tobor 

f(c') > f(0) > g ( J )  = 0 

Consequently there is a c = i. such that f(2) = g( E ) ,  and uniqueness is given by the 
sign of the derivatives of 1 and g .  Since different trajectories cannot cross in phase 
space, we have 

W " U , Z )  = W"(U,Z) 

and therefore an SH connection must exist when LL < 0. 

U. " = U. 
t 
I I I 

Figure 6 'lhjuclories in (3) lor largc c = c t .  Subjected IO enough damping, a lrdjeclory 
leaving II = U, is aptured nionolonicillly by 1hc minimum of H ,  U = U". ?lis shows 
that f(c7) = 0. while clearly g(c1) d: 0. Somewhere ui' and wY musl have crossed. 

More importantly, this SH connection must be structurally stable. If we append 
the equation 

d 
- c  = 0 
d z  

to (21) so that the effect of varying c can be included explicitly, we have an au- 
tonomous system of equations for the depcndcnt variables U and c. In the resulting 
phase space, wS and IU" are centre stablc and unstable manifolds, respectively, and 
the above argument with the derivatives of j and g show that these two manifolds 
intersect transversely. Because transverse intersection is stable structurally, perturbing 
the parameter p cannot destroy the connection. Thus, as we increase p from nega- 
tive through zero and to positive, we get a continuous deformation of the original SH 
trajectory for p < 0, a sequence of events depicted in figure 7. Consequently, there 
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U. 

I 

U. 
I’igurc 7. (n )  ’me strongly hetemclinic mnnection 
which must exisl when p < 0. ?he fmnl trajectoly 
must attach to thc strongly attracting eigendirection 
kuausc lhal is the only one around. (b) Contin- 
uous deformalion of the strongly hetemclinic Ira- 
jrctory in (0 )  yields the SH Imnt lor p = 0. A 
(wly) weakly allracting direclion mmes in10 exis- 
tcncc‘ when p = 0. (c) The SH Iron1 mnlinues 
10 exist as {L is increased p s i  zero, in v i l e  of 
[lie cxiswncc of a second. more weakly allracling, 
myendirection. l h i s  results in the non-genencily of 
the si1 mnnection. 

exists a p, > 0 so that when p < pc SH connections exist in (21). This results in five 
types of possible phase spaces for 0 < p < pc, two of which are degenerate, and the 
relationships of these phase spaces as c is varied are illustrated in figure 8. 

The existence of SH connections in (21) is supported by numerical simulations of 
the PDE (1) with nonlinearity (20). As described in the introduction, linear theory 
predicts an asymptotic speed for fronts of C’ = 2fl ,  and no asymptotic speed at 
all when p < 0. Using the Fourier-in-space, Runge-Kutta in time numerical method 
described in Powell, Newell and Jones [SI we solved (1) with the initial condition 
u ( 2 , O )  = 2e- z2 ,  and diagnosed the local spced of the resulting fronts by evaluating 

numerically. Here uo was chosen uo = 0.1, and we looked at the final spatial position 
where U = uo, corresponding to the spced of a right-moving front. 

In the first simulation, we choose 11 = -0.1 to demonstrate that a front solution 
does indeed exist when 11 < 0. Figure Y is a plot of .ti against space, plotted a t  times 
1 = 3n,  I I  = 0,. . , , 5 .  It  is clear from the graph of succeeding Slices of the front 
that the velocity is positive for ncgative / I  sullicicntly close t o  zero. 

In the second simulation we chose p Small and positive, p = 0.00. Here the 
linear theory predicts an asymptotic speed of c’ = 2 m  = O.G. Figure 10 is 
the Same as figure 9, except for the difference p = 0.00. Figure 11 is a plot of 
clocal(l) for the duration of the simulation. Note that clocal converges nicely, but 
to some c = i. > c* = O.G. This illustrates both that the SH front exists in this 
parameter regime and that it is an asymptotic state. Figure 12 is a plot of clocal(l) 
for p = 1, which is above threshold for the Onset of linear fronts. Notice that here 
Clocal - C. = 2. 
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U. U. 

U 

I bl 

". U. 

Figure R '[he complete piclure of possible fmnl 
k h w i n u n  as the front speed is varied, lor 0 < 
p < pc.  n l i s  xqucnce of khavioun was lint 
noliccd hj Jones [U] and \vas discussed in delail 
Ihy I'owuII 181. (a) For c < 2 f i  = c* the Imnls 
;,re mcillalory. (b) AI c = C *  lhe pliask space is 
degeneralc, and Ihe Imnl approaches zero from the 
ncgiilivr sidc. ungeential IO the degcnerale eigendi- 
rcclian. (c)  When C. < c < E ,  the frmt has 
geencric behaviour and approaches zero along the 
wcakcr direclion, but it does so from the nega- 
tive ride. (d )  At c = i: the M fmnl exisu. (e) 
For c > E the fronis are once again generic, and 
approacli zem from the positive sidc. 

U 

As far as we know, there is no analytic method lor finding the SH front with speed 
2 and non-generic behaviour. In Sact, because O S  the non-generic behaviour it is even 
hard to find these fronts numerically in (21), since one must look Sor a tangential 
intersection of two one-dimensional manilolds, neither one  of which is attracting. 
Of course, a shooting method could detcrminc i., if not the form of the front, 
and then the linear dispersion relation would determine the asymptotic approach 
to zero by evaluating A-(;). This is enough to dctcrmine numerically the cutoff 
value p, above which the linear fronts arc prclerrcd using the steepness criterion 
from the introduction. Neverthcless, any hope that the wrc method, SFOR, or  Some 
related methods might prove to be 'magic bullets' lor determining SH Connections 
appears to be unloundcd. In the prcvious section we showed that these methods 
only work for particular sets ol nonlincarities in P( U), and in this section we have 
shown that SH connections cxist outhide of the class of equations with these kinds 
of nonlinearities. In the next section we will apply classical methods So1 determining 
Lie symmetries to try and understand what is so special about the wrc-amenable 
equations of the form (8). 
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I., , , ,  , , , ,  , ,  , , , , , ,  , , . ,  ~ , , ,  
7 . , ,  . . , ,  , , , ,  , 

Figure 11. Behaviour of local (in time) front speeds for p = 0.09 (represented by C U N C  

A). Culve B converges to e* as the inverse of time. while the diagnosed speeds clearly 
converge Io same E > C' = 0.6. Again, this demonstrates that SH francs mist far the 
counter-aample syscem. 

described beiow, tradiiionai symmetry methods yieid iittie insight into this question, 
although a recent extension to the WTC method (Cariello and 'lhbor [lo]) does show 
how the SFOR is related to a type of similarity transformation. 

Application of standard Lie symmetry methods to (23) shows that the system only 
admits a trivial two parameter group corresponding to tranlation in I and t, i.e. the 
equation is invariant under the transformations z1 = z+ a€ ,  1 ,  = t $  be and U, = U, 

that z = z - ct is a group invariant, from which follows the standard travelling wave 
reduction 

^__I L --- ^^_^.^_ w u c ~ c  a auu v aicl L U I I ~ ~ W  and t k the group pziiimeiei. Thk miifiniij iti fait 

Uzz  + cu* + p u  + p( ,+ , ) /2u("+1) /2  - U" = 0 .  

Such a group invariance is an obvious, if not only, prerequisite for the existence Of 

travelling wave fronts. 

ever, for the case n = 3, an additional symmetry is found for one special value Of 
p,-we do not pursue this special case here.) When p(,,+l)/2 = 0, we introduce the 
standard infinitesimal transformations 

U, = U + r q ( u , r )  + O ( e i )  

The only additional symmetry exhibited by (8) arises when p(n+ll12 - : 0. (HOW- 

z I  = z +.((U, Z )  + o(c2) and 

where E is the group parameter and ( and q are accorded the standard forms 

( ( u , ~ )  = f(t) and q ( u , r )  = g ( . z ) u .  



2 . 4  

2 . 2  

2 . 8  

1 . 8  

From these equations one a n  deduce that 

((U, :) = ([e7' + b 

and 

I / (  U ,  Z )  = - 7 1 6 7 P "  . 

Here  U and b are  constants and 

I ' I I I  - ~ ' I ' l ~ l . " " ' ' ' ~ " ' '  

3 
-5 - 

- /- 

. 

3 

.-:--l-b-A==* . * ' " " .I 1 t, 

provided that 

c? ( 0  + 3)' 
/ r  ? ( I 1  + 1 ) .  
- - - 

This condition lor the cxistence (if the non-trivial group (a # 0) is the Same condition 
for equation (8) to have the PainlcvC prcipcrty. (The case U = 0, I, # 0 corresponds 
to the usual translational invariance.) 

" P 

1 . 8  
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The  global transformations associated with (24) and (25) a re  (setting = 1, 
b = 0) 

(26) z1 = : - log (1 - cyc7’ ) 

and 

I , .  -1  = U ( !  - E7e7‘)-*’7 , (27) 

Eliminating e between these reveals the invariant combination ue6‘. This suggests 
introduction of the vansformation 

where ’ denotes diffcrcntiat‘ion with respect to  the variahle e-?‘. As nice as this addi- 
tional symmetry is! it clcarly has little to do with the existence of strongly heteroclinic 
connections, since the case of pi, ,+11/? = 0 is precisely when such connections do not 
exist. (This symmetry might, however, provide ‘a rationalization for the observation, 
made in the third section, that only when = 0 does the Thylor-expanded 
wrc solution choose a balance bctwccn the two linear cigendirections.) Below we 
shall show that the transformation lcading to (28) is contained naturally in the wrc 
expansion. 

Recent work by Cariello and T?hor  [IO] has shown that there are connections 
between the wrc method for nonintcgrablc evolution equations and certain sym- 
metries. This comes about hccause the constrained singular manifold used in the 
wrc method can be shown to play the role of a similarity variable. Although this 
idea was introduced for I’DR, it can also be carricd through on the  ODE (8). Use of 
the truncated expansion (6) throws away a lot of uscful information-cspecially that 
contained in certain arbitrary coellicicnts that can be found (for the constrained 9) 
a t  higher orders of 4. Some cif this information can hc recaptured by making the 
ansatz (thc ‘rescaling ansat? ) 

which corresponds to a partial resummation of rhc full wrc expansion. Suhstituting 
(29) into (8) and introducing the r a r i ahk  / > ( d ~ )  = j ( d J ) / @  YicldS 

$z IF” - B ( P  + 1 1171 + Pi,,+, ,/! ,jm [I‘ + j j /””+’~/?]  = n . ( 3 4  

E.p_ spp_ril] fcrm e[ $ xczf i$ 
(30) a non-autonomous ODE with 6 as the indcpcndcnt variable. 

pole solution 

$: hc rcplaccd hy a(+ - 1 ) ;  thcrchy making 

Equation (30) has some interesting pr(ipcrtics. Firstly, note that it,has the special 
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which returns the known front solution (11). Secondly, in the limit t - 5u (recall 
that z is the travelling wave variable .I = T - ci), $ z  vanishes and (30) reduces to 

F’ + pF(n+l)/? = 0 ,  

Recalling that U = a F ,  this can be transformed back to the original variables to yield 

which is exactly the van Saarloos SFOR. Thus this reduction can be seen to correspond 
to an  asymptotic limit of a type of ‘symmetry’ transformation. Traditional group 
methods tell us that only when p ( , L + , l / 2  = 0 is dZ a group invariant; whereas the 
rescaling ansatz reveals that this is still a useful combination even when p ( , , + l l 1 2  # 0 
and the particular group is apparently absent. In  the case P ( , + ~ ) , ?  = 0, our reduction 
simplifies to 

F” - p( D + I ) rTi = a 

which is equal to (28) when an appropriate choice of A is made. Thus, in some 
sense the ‘symmetries’ inherent in the rescaling version of the w c  analysis include 
the traditional, continuous groups. 

6. Conclusion 

The previous section shows that none of the ‘normal’ continuous or discrete symme- 
tries seem to give rise to the equations for which the wrc method works. However, 
a ‘similarity’ analysis based on the wrc approach seems to capture a kind of ‘asymp- 
totic’ symmetry of which we have no understanding. We have classified that subclass 
of equations of the type ( I )  for which known methods work, and within that class 
presented a tabulation of when the resulting f r o n t  solutions arc non-gcncric and, 
in particular, strongly hcteroclinic (sl’-l). The SI-I structure and its resulting dynamics 
exist outside of this class. Our results are therefore somewhat negative; we know 
what current methods cannot do lor cquations of the form (l), and we know that 
neither the discrete or continuous symmetries give rise to cquations of the form (8). 
However, our ‘negative’ results clcarly define some extremely interesting questions. 
What symmetries, if any, are cncapsulatcd i n  equations like (S)? Why should a can- 
strained singular manifold cxpansion have anything to do with topological properties 
in phase space? Do similar results hold for ‘kink‘ and ‘soliton’ solutions obtained 
using the w c  approach’! And can thc WL‘C approach he extended to work outside 
gf the special class we have descrihcd! We now know that the w c  trajectories a re  
not merely integrable artitacts in non-integrable systems; they can be dynamically 
important. Therefore, understanding these trajectories will show us something deep 
and unknown about the physics of non-integrable systems. 

On the ‘positive’ side, we have shown that the SFOK and hcnce the WI‘C method 
do capture separatrices and SH connections when they exist. This in itself is pleasing, 
because separatrices a re  the skelcton of phase space. In the context of reducing 
infinitedegree systems (like PDE) to linite-ordcr systems (like the ODE we have dealt 
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with here), these solutions are important organizing structures in the dynamical be- 
haviour of the PDE. ODE sepdratrices act like lixed points in the infinite-dimensional 
phase space of the PDE, and even if they are unstable they still direct the behaviour 
of the transients along their unstable manifolds. With a method in hand to find 
these functional fixed points, it is possible to develope a more complete analytic 
understanding of non-integrable, nonlinear P D B .  

J Powell and M Tubor 
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